Flavopiridol induces G1 arrest with inhibition of cyclin-dependent kinase (CDK) 2 and CDK4 in human breast carcinoma cells.
نویسندگان
چکیده
Flavopiridol (L86-8275), a N-methylpiperidinyl, chlorophenyl flavone, can inhibit cell cycle progression in either G1 or G2 and is a potent cyclin-dependent kinase (CDK) 1 inhibitor. In this study, we used MCF-7 breast carcinoma cells that are wild type for p53 and pRb positive and contain CDK4-cyclin D1 and MDA-MB-468 breast carcinoma cells that are mutant p53, pRb negative, and lack CDK4-cyclin D1 to investigate the G1 arrest produced by Flavopiridol. Recombinant CDK4-cyclin D1 was inhibited potently by Flavopiridol (Kiapp, 65 nM), competitive with respect to ATP. Surprisingly, CDK4 immunoprecipitates derived from Flavopiridol-treated MCF-7 cells (3 h, 300 nM Flavonolpiridol) had an approximately 3-fold increased kinase activity compared with untreated cells. Cyclin D and CDK4 levels were not different at 3 hr, but cyclin D levels and CDK4 kinase activity decreased thereafter. The phosphorylation state of pRb was shifted from hypercoincident to hypocoincident with the development of G1 arrest. Asynchronous MDA-MB-468 cells were inhibited in cell cycle progression at both G1 and G2 by Flavopiridol. Flavopiridol inhibited the in vitro kinase activity of CDK2 using an immune complex kinase assay (IC50, 100 nM at 400 microM ATP). Immunoprecipitated CDK2 kinase activity from either MCF-7 or MDA-MB-468 cells exposed to Flavopiridol (300 nM) for increasing time showed an initial increased activity (approximately 1.5-fold at 3 h) compared with untreated cells, followed by a loss of kinase activity to immeasurable levels by 24 h. This increased immunoprecipitated kinase activity was dependent on the Flavopiridol concentration added to intact cells and was associated with a reduction of CDK2 tyrosine phosphorylation. Cyclin E and A levels were not altered to the same extent as cyclin D, and neither CDK4 nor CDK2 levels were changed in response to Flavopiridol. Inhibition of the CDK4 and/or CDK2 kinase activity by Flavopiridol can therefore account for the G1 arrest observed after exposure to Flavopiridol.
منابع مشابه
Flavopiridol Induces Gj Arrest with Inhibition of Cyclin-dependent Kinase (CDK) 2 and CDK4 in Human Breast Carcinoma Cells
Flavopiridol (L86-8275), a JV-methylpiperidinyl, chlorophenyl flavone, can inhibit cell cycle progression in either G, or G2 and is a potent cyclin-dependent kinase (CDK) 1 inhibitor. In this study, we used MCF-7 breast carcinoma cells that are wild type for p53 and pRb positive and contain CDK4-cycIin Dl and MDA-MB-468 breast carcinoma cells that are mutant p53, pRb negative, and lack CDK4-cyc...
متن کاملFlavopiridol in MCF-7 Human Breast Carcinoma Cells Induced by Down-Regulation of Cyclin D1 by Transcriptional Repression
Flavopiridol is a novel flavonoid that induces cell cycle arrest at different stages of the cell cycle because of the inhibition of cyclin-dependent kinases (cdks). In previous studies from our laboratory, (B. A. Carlson et al., Cancer Res., 56: 2973–2978, 1996), we observed that exposure of the MCF-7 breast carcinoma cell line to flavopiridol resulted in G1-S arrest, which was associated with ...
متن کاملKip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-beta.
G1 progression in mammalian cells requires the activity of the cyclin D-dependent kinases Cdk4 and/or Cdk6 and the cyclin E-dependent kinase Cdk2. Proliferating Mv1Lu mink lung epithelial cells and human keratinocytes contain high levels of the universal Cdk inhibitor p27Kip1 distributed in complexes with Cdk2, Cdk4, and Cdk6. Addition of the antimitogenic cytokine transforming growth factor-be...
متن کاملPD-0332991 induces G1 arrest of colorectal carcinoma cells through inhibition of the cyclin-dependent kinase-6 and retinoblastoma protein axis
Preclinical and clinical studies have demonstrated the anticancer activity of PD-0332991, a selective cyclin-dependent kinase 4/6 (CDK4/6) inhibitor, in the treatment of various types of cancer in a retinoblastoma protein (RB)-dependent manner. However, it remains unclear whether CDK4, CDK6 or both are required for RB phosphorylation in colorectal carcinoma and thus PD-0332991 can be used to ta...
متن کاملCDK4 down-regulation induced by paclitaxel is associated with G1 arrest in gastric cancer cells.
Paclitaxel induces a cell cycle block at G2-M phase by preventing the depolymerization of microtubules and induces p53-independent apoptosis in many cancer cells. We observed that gastric cancer cells treated with paclitaxel have shown a cyclin-dependent kinase (CDK)4 down-regulation. This paclitaxel-induced CDK4 down-regulation resulted in a cell cycle arrest at G1-S phase. To confirm this obs...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 56 13 شماره
صفحات -
تاریخ انتشار 1996